A counting formula for certain hierarchical orderings
نویسنده
چکیده
A hierarchy is a distribution of elements on levels. For a given number of elements a certain hierarchy can be arrangend in a finite number of ways. We provide a counting formula for certain types of hierarchies. Mainly, this formula is a sum over the integer partitions of the number of elements. Furthermore, several basic combinatorical numbers like the Stirling numbers of the second kind, the Bell numbers and the binomial coefficients can be expressed by such a sum.
منابع مشابه
A List of Hierarchical Orderings
In this paper a hierarchy is defined as a distribution of n labeled or unlabeled elements over up to n levels. A hierarchy may have additional properties like two kinds A and B of elements. Certain basic integer sequences appear as hierarchies in this point of view. We will give descriptions and counting formulas (number of hierarchies as function of n) for several basic and for certain particu...
متن کاملHessian Stochastic Ordering in the Family of multivariate Generalized Hyperbolic Distributions and its Applications
In this paper, random vectors following the multivariate generalized hyperbolic (GH) distribution are compared using the hessian stochastic order. This family includes the classes of symmetric and asymmetric distributions by which different behaviors of kurtosis in skewed and heavy tail data can be captured. By considering some closed convex cones and their duals, we derive some necessary and s...
متن کاملOn families of testing formulae for a pp formula
Astier and Tressl have recently proven that a pp formula fails on a finite subspace of a space of orderings if and only if a certain family of formulae is verified (V. Astier, M. Tressl, Axiomatization of localglobal principles for pp formulas in spaces of orderings, Arch. Math. Logic 44, No. 1 (2005), 77-95). The proof given in their paper is nonconstructive and uses rather advanced techniques...
متن کاملAsymptotics for a Resonance-counting Function for Potential Scattering on Cylinders
We study certain resonance-counting functions for potential scattering on infinite cylinders or half-cylinders. Under certain conditions on the potential, we obtain asymptotics of the counting functions, with an explicit formula for the constant appearing in the leading term.
متن کاملOn the Complexity of Event Ordering for Shared-Memory Parallel Program Executions
This paper presents results on the complexity of computing event orderings for sharedmemory parallel program executions. Given a program execution, we formally define the problem of computing orderings that the execution must have exhibited or could have exhibited, and prove that computing such orderings is an intractable problem. We present a formal model of a shared-memory parallel program ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007